Significant equations sheet is attached.

Answer all the following questions

Final Term Exam (Fall 2016) Date: Monday (2/1/2017) Subject: Electronic Circuits (A) Duration: 4 hours • No. of guestions : 5

Total Mark: 90 Marks

Model Answer

Question (1) (12 Marks)

•

Choose the correct answer (put your answer in a table format): a) Which of the h-parameters corresponds to βr_e in a common-collector configuration? 1- **h**_{ic} 2- h_{fb} 3- h_{fe} 4- hie b) The loaded voltage gain of an amplifier is always greater than the no-load level. 1- True 2- False c) A change in frequency by a factor of ______ is equivalent to 5 octaves. 1- two 2- twenty 3- ten 4- thirty two d) By how much does the output signal vary for a class A power amplifier? 3- between 180° and 360° 2-180° 1- 360° 4- Less than 180° e) To start-up, the oscillator should have a closed loop gain unity. 1- less than 2- equals 3- greater than f) A current-shunt feedback amplifier the input impedance. 1- increases 2- decreases 3- doesn't change

Question (2) (18 Marks)

- 1- Mention the reasons for the decay in the low and high frequency responses in each one of the following
 - a. RC coupled amplifier.
 - b. Transformer coupled amplifier.
 - c. Direct coupled amplifier.

Answer:

	the reasons for the decay in the low frequency response	in high frequency response
RC coupled amplifier.	Large coupling and bypass capacitors e.g. C_S , Cc and C_E	Parasitic capacitances of network and active devices and frequency dependence of the gain of the transistor, FET, or tube
Transformer coupled amplifier.	The shorting effect across the input terminals of the transformer of the magnetizing inductive reactance at low frequencies (XL = 2π fL). The gain must obviously be zero at f =0 because at this point there is no longer a changing flux established through the core to induce a secondary or output voltage.	The stray capacitance between the turns of the primary and secondary windings.

2- What are the sources for the start-up signal in oscillator circuits?

Answer:

Initially, a small positive feedback voltage develops from

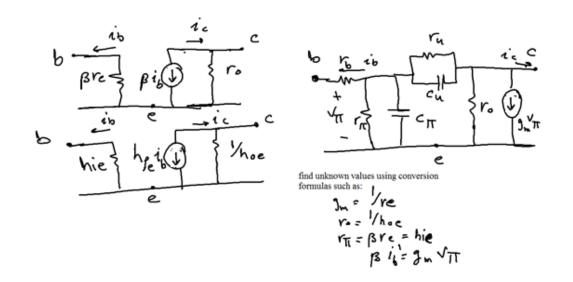
- 1- thermally produced broad-band noise in the resistors or other components or
- 2- from power supply turn-on transients.
- 3- What are the improvements obtained from using negative feedback amplifiers?

Answer:

Some improvements are:

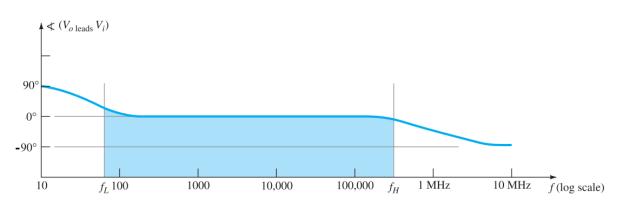
- 1. Higher input impedance.
- 2. Lower output impedance.
- 3. Better stabilized voltage gain.
- 4. Improved frequency response.
- 5. Reduced noise.
- 6. More linear operation.
- 4- Determine the voltage gain, input, and output impedance with feedback for current-series feedback amplifier having A = -150, $Z_i = 40 \text{ k}\Omega$, and $Zo = 25 \text{ k}\Omega$ for feedback of β =-0.15.

Answer:

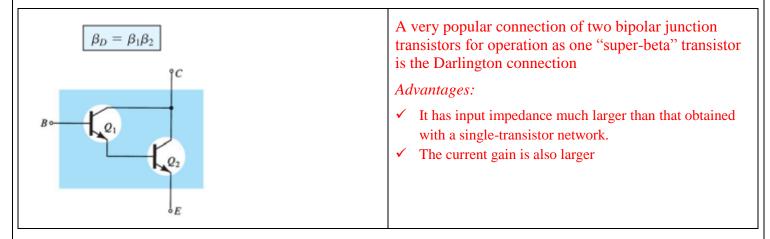

$$\begin{split} A_f &= A/(1+\beta A) = -150/(1+(-150^*-0.15)) = -150/23.5 = -6.38\\ Z_{if} &= Z_i^*(1+\beta A) = 40K^*23.5 = 940~K\Omega\\ Z_{of} &= Z_o^*(1+\beta A) = 25K^*23.5 = 587.5~K\Omega \end{split}$$

Question (3) (20 Marks)

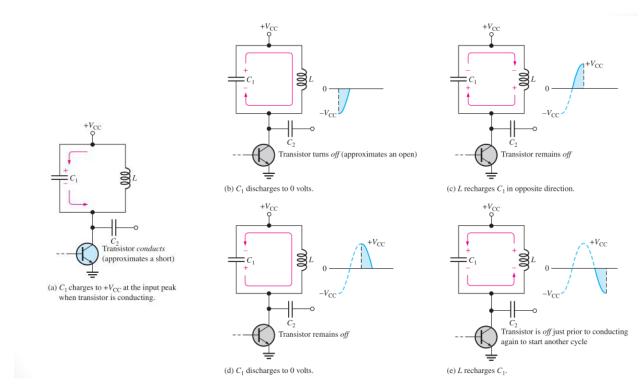
- 1- Sketch the following for a common-emitter *npn* transistor:
 - a. the approximate hybrid model,
 - b. hybrid π model and
 - c. r_e model.


(Given $r_b = 3\Omega$, $r_{\pi} = 1.6k\Omega$, $r_u = 20M\Omega$, $C_u = 1pF$, $C_{\pi} = 5pF$, $\beta = 100$, $h_{oe} = 18 \ \mu$ S.)

Answer:


2- Sketch (free hand) the complete phase response of a common base amplifier.

Answer:


3- Sketch the Darlington pair transistor symbol, and mention its advantages.

Answer:

4- Illustrate the resonance action in tuned amplifiers.

Answer:

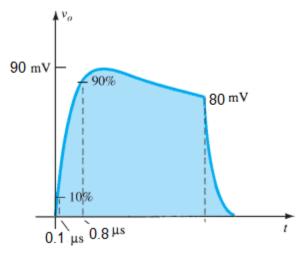
5- Derive an equation for the wien-bridge oscillation frequency.

Answer:

$$\begin{aligned}
\overline{z}_{1} = R_{1} - \frac{j}{wc_{1}} \\
\overline{z}_{2} = R_{2} || - \frac{j}{wc_{2}} = \frac{R_{2} \neq -j}{R_{2} - j/wc_{2}} \\
= \frac{R_{2}}{j wR_{2}c_{2} \pm 1} \\
\overline{z}_{2} = \frac{R_{2}}{j wR_{2}c_{2} \pm 1} \\
\overline{z}_{2} = \frac{R_{2}}{Z_{1}} \\
\overline{z}_{1} = \frac{R_{2}}{Z_{1}} \\
\overline{z}_{2} = \frac{R_{1}}{Z_{1}} \\
\overline{z}_{1} = \frac{R_{2}}{Z_{1}} \\
\overline{z}_{1$$

Question (4) (15 Marks)

1- Calculate the resonance frequency of a Hartley oscillator if the tank circuit has Q=8 and its components values are $L_1 = 1.5$ mH, $L_2 = 10$ mH and C=470pF.


Answer:

.:

 $L_T = L_1 + L_2 = 1.5 + 10 = 11.5 \text{mH}$

$$f_r = \frac{1}{2\pi\sqrt{L_{\rm T}C}} \sqrt{\frac{Q^2}{Q^2 + 1}} \rightarrow \text{so, } f_r = 67.93 \text{ kHz}$$

2- The application of a 10-mV, 100-kHz square wave to an amplifier resulted in the output waveform of Fig. 1,

a. Determine the bandwidth of the amplifier.

Answer:

B.W.= f_H - f_L From (b) \rightarrow f_H = 500kHz, f_L =3.5kHz So, B.W.= 496.5 kHz

b. Calculate the low and high cutoff frequencies.

Answer: From the figure, $t_r=0.8-0.1=0.7 \ \mu s$ P=(90-80)/90= 1/9So, $f_L=(P/\pi)fs=3.5kHZ$

 $f_{\rm H}=0.35/{\rm tr}=500{\rm kHz}$

c. If we construct a multistage amplifier by cascading 3 stages of the above amplifier, calculate the new bandwidth.

Answer:

n=3, $f_1' = f_1/\sqrt{2^{1/n} - 1} = 6.87 \text{ kHz}$ $f_2' = (\sqrt{2^{1/n} - 1})f_2 = 254.9 \text{ kHz}$ B.W. = 254.9-6.87 = 248.9 kHz

- 3- For the power amplifier circuit of Fig. 2:
 - a. What's the name of this type?

Answer: Class A transformer coupled power amplifier

b. What's the theoretical maximum efficiency of this circuit? Answer: 50%

c. Calculate the efficiency of that circuit for a supply of 12 V and output of V(p) = 6 V. Answer:

$$\% \eta = 50 \left(\frac{V_{CE_{\text{max}}} - V_{CE_{\text{min}}}}{V_{CE_{\text{max}}} + V_{CE_{\text{min}}}} \right)^2 \%$$

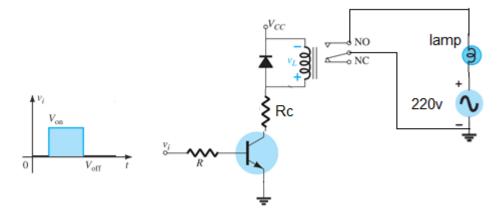
$$V_{CE_{max}} = V_{CE_Q} + V(p) = 12 V + 6 V = 18 V$$

$$V_{CE_{min}} = V_{CE_Q} - V(p) = 12 V - 6 V = 6 V$$

$$\% \eta = 50 \left(\frac{18 \text{ V} - 6 \text{ V}}{18 \text{ V} + 6 \text{ V}} \right)^2 \% = 12.5\%$$

d. What transformer turns ratio is required to match a 16- Ω speaker load so that the effective load resistance seen at the primary is 10 k Ω ?

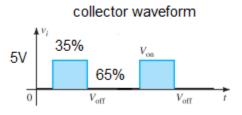
Answer:


$$\left(\frac{N_1}{N_2}\right)^2 = \frac{R'_L}{R_L} = \frac{10 \,\mathrm{k}\Omega}{16 \,\Omega} = 625$$
$$\frac{N_1}{N_2} = \sqrt{625} = 25:1$$

Question (5) (25 Marks)

1- Design a transistor switch circuit to drive a 220v lamp, the switch is driven by a microcontroller signal with duty cycle equals 65%. Sketch the collector waveform.

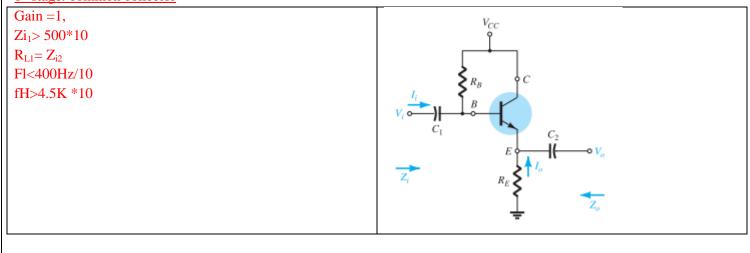
Answer:

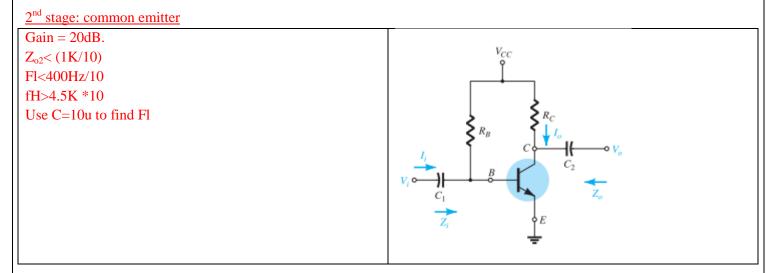

We design the shown circuit

We use Vcc=5VFor the transistor to operate as a switch, this constraint should be followed:

$$I_{C_{\text{sat}}} = \frac{V_{CC}}{R_C} \qquad I_B > \frac{I_{C_{\text{sat}}}}{\beta_{\text{dc}}} \qquad I_B = \frac{V_i - 0.7 \text{ V}}{R_B}$$

Assume RC & Icsat and find RB or vice versa


2- Design an amplifier circuit with the following specifications:


- The amplifier consists of two RC coupled stages with total gain of 20 dB.
- The first stage is an emitter follower circuit to match between a mic signal with internal resistance of 500Ω and the second stage.
- The mic signal frequency band is between 400 Hz and 4.5 KHz.
- $\circ~$ The second stage is a common emitter amplifier that drives a 1K Ω load through a 10 uF capacitor.

Plot the low and high frequency responses of that amplifier taking into consideration the effect of each stage on the other.

Answer:

Many designs are acceptable but it should follow these constraints: 1^{st} stage: common collector

Good Luck, Dr. Ahmad El-Banna