	E:
Benna University	Final Term Exam
Faculty of Engineering at Shoubra	Date: Monday 23/1/2017
Electrical Engineering Department	Subject: <u>Electromagnetic Waves</u>
Third Year Communications	Model Answer
Answer all the following questions	 No. of questions: 4
Illustrate your answers with sketches when necessary	 Total Mark: 90 Marks

Question 1 25 marks

a- A 50 V voltage generator at 20 MHz is connected to the plates of an air dielectric parallel-plate capacitor with plate area 2.8 cm² and separation distance 0.2 mm. Find the maximum value of (i) displacement current density and (ii) displacement current.

Solution (10 Marks)

(i)
$$J_{ds} = j\omega D_s \rightarrow |J_{ds}|_{max} = \omega \varepsilon E = \omega \varepsilon \frac{V_s}{d}$$

$$= \frac{10^{-9}}{36\pi} \times \frac{2\pi \times 20 \times 10^6 \times 50}{0.2 \times 10^{-3}}$$
$$= 277.8 \text{ A/m}^2$$

(ii)
$$I_{ds} = J_{ds} \cdot S = \frac{1000}{3.6} \times 2.8 \times 10^{-4} = 77.78 \text{ Ma}$$

b- Let the fields, $E(z, t) = 1800 \cos(10^7 \pi t - \beta z)a_x$ V/m and $H(z, t) = 3.8 \cos(10^7 \pi t - \beta z)a_y$ A/m, represent a uniform plane wave propagating at a velocity of 1.4×10^8 m/s in a perfect dielectric. Find: (i) β . (ii) λ . (iii) η . (iv) μ_r . (v) ε_r .

Solution (15 Marks)

(i)
$$\beta = \frac{\omega}{v} = \frac{10^7 \pi}{1.4 \times 10^8} = 0.224 \text{ m}^{-1}$$

(ii)
$$\chi = \frac{\beta}{\beta} = 28 \text{ m}$$

(iii) $\eta = \frac{|E|}{|H|} = 474 \Omega$

(iv) We have two equations in two unknowns, μ_r and ε_r : $\eta = \sqrt{\frac{\mu_0 \mu_r}{\varepsilon_0 \varepsilon_r}}$ and $\beta = \omega \sqrt{\mu_0 \mu_r \varepsilon_0 \varepsilon_r}$

$$\varepsilon_r = \frac{\beta^2}{\omega^2 \mu_0 \mu_r \varepsilon_0} \twoheadrightarrow \eta = \sqrt{\frac{\mu_0 \mu_r}{\varepsilon_0 \frac{\beta^2}{\omega^2 \mu_0 \mu_r \varepsilon_0}}} = \frac{\mu_0 \mu_r \omega}{\beta} \twoheadrightarrow \mu_r = \frac{\eta \beta}{\omega \mu_0} = 2.69$$

(v)
$$\varepsilon_r = \frac{\beta^2}{\omega^2 \mu_0 \mu_r \varepsilon_0} = 1.7$$

Question 2 20 marks

- a- A linearly polarized uniform plane wave is propagating in a homogenous medium. The following information is provided:
 - The operating frequency is 10 GHz.
 - The attenuation constant in the medium is $4\pi \times 10^2$ Nepers/mm.
 - $|E|/|H| = 0.0889 \ \Omega.$
 - The magnetic field phasor lags the electric field one by 45°.
 - (i) What is the wavelength in the medium?
 - (ii) What distance must the wave propagate for its time-average power density to be reduced by 50%?
 - (iii) Calculate the magnetic permeability and the conductivity of the medium?

Solution (15 Marks)

(i) The electric and magnetic field are 45° out of phase; hence , the medium is a good conductor.

Thus, it is
$$\beta = \alpha = 4\pi \times 10^5 \text{ m}^{-1} \Rightarrow \lambda = \frac{2\pi}{\beta} = 5 \times 10^{-6} \text{ m}$$

(ii)
$$|\langle S(t,z) \rangle| = \frac{1}{2|\eta|} |E|^2 e^{-2\alpha z} \cos \theta_{\eta}$$

 $|\langle S(t,z+d) \rangle| = 0.5 \times |\langle S(t,z) \rangle|$
 $\therefore e^{-2\alpha z} = 0.5 \Rightarrow d = \frac{-\ln 0.5}{2 \times 4\pi \times 10^5} = 0.2758 \,\mu\text{m}$
(iii) $|\eta| = \sqrt{\frac{\omega \mu}{\sigma}} = 0.0889 \text{ and } \alpha = \sqrt{\frac{\omega \mu \sigma}{2}} = 4\pi \times 10^5$
 $\frac{\alpha}{|\eta|} = \frac{\sigma}{\sqrt{2}} \Rightarrow \sigma = \sqrt{2} \frac{\alpha}{|\eta|} = 2 \times 10^7 \,\text{S/m}$
 $\alpha |\eta| = \frac{\omega \mu}{\sqrt{2}} \Rightarrow \mu = \sqrt{2} \frac{\alpha |\eta|}{\omega} = 25.1 \times 10^{-7} \,\text{H/m}$

b- It is required a minimum field of 0.25 mV/m for AM station covering the area of a city. What is the power density (W/m^2) associated with this minimum field?

Solution (5 Marks)

Power density =
$$|\langle S \rangle| = \frac{1}{2|\eta|} |E|^2$$

 $E = 25 \text{ mV/m}, |\eta| = 377 \Omega$
 $|\langle S \rangle| = 0.829 \times 10^{-7} \text{ W/m}^2$

in the negative y direction.

Q 4 – Solution

The field components for TM_m mode are:

$$H_{y} = H_{0} \cos\left(\frac{m\pi}{b}x\right) e^{-j\beta_{z}z},$$

$$E_{x} = \frac{\beta_{z}}{\omega\epsilon} H_{0} \cos\left(\frac{m\pi x}{b}\right) e^{-j\beta_{z}z},$$

$$E_{z} = -\frac{m\pi}{j\omega\epsilon b} H_{0} \sin\left(\frac{m\pi x}{b}\right) e^{-j\beta_{z}z},$$

$$eta_z = \left[\omega^2 \mu \epsilon - \left(rac{m\pi}{b}
ight)^2
ight]^{rac{1}{2}},$$

Hence the tangential electric field \mathbf{E}_{z} is proportional to:

$$\sin\left(\frac{m\pi x}{b}\right)$$

Where m=2 for the TM₂ mode. and b=0.07m=7cm.

The peaks of E_z occur when:

$$\sin\left(\frac{m\pi x}{b}\right) = \pm 1$$
 (with x positive)

i.e. when:

$$\frac{m\pi x}{b}$$
 = ($\pi/2$), (3 $\pi/2$) (with m=2 and b=7cm)

∴ The first peak occurs at:

x = (b/4) = 1.75 cm.

and the second peak occurs at:

x = (3b/4) = 5.25 cm.