- Answer all the following questions
- Illustrate your answers with sketches when necessary

Question 1 25 marks

a- A 50 V voltage generator at 20 MHz is connected to the plates of an air dielectric parallel-plate capacitor with plate area $2.8 \mathrm{~cm}^{2}$ and separation distance 0.2 mm . Find the maximum value of (i) displacement current density and (ii) displacement current.
Solution (10 Marks)
(i) $J_{d s}=j \omega D_{s} \rightarrow\left|J_{d s}\right|_{\max }=\omega \varepsilon E=\omega \varepsilon \frac{V_{s}}{d}$

$$
\begin{aligned}
& =\frac{10^{-9}}{36 \pi} \times \frac{2 \pi \times 20 \times 10^{6} \times 50}{0.2 \times 10^{-3}} \\
& =277.8 \mathrm{~A} / \mathrm{m}^{2}
\end{aligned}
$$

(ii) $I_{d s}=J_{d s} \cdot S=\frac{1000}{3.6} \times 2.8 \times 10^{-4}=77.78 \mathrm{Ma}$
b- Let the fields, $E(z, t)=1800 \cos \left(10^{7} \pi t-\beta z\right) a_{x} V / m$ and $H(z, t)=3.8 \cos \left(10^{7} \pi t-\beta z\right) a_{y}$ A / m, represent a uniform plane wave propagating at a velocity of $1.4 \times 10^{8} \mathrm{~m} / \mathrm{s}$ in a perfect dielectric. Find: (i) β. (ii) λ. (iii) η. (iv) μ_{r}. (v) ε_{r}.

Solution (15 Marks)

(i) $\quad \beta=\frac{\omega}{v}=\frac{10^{7} \pi}{1.4 \times 10^{8}}=0.224 \mathrm{~m}^{-1}$
(ii) $\lambda=\frac{2 \pi}{\beta}=28 \mathrm{~m}$
(iii) $\quad \eta=\frac{|E|}{|H|}=474 \Omega$
(iv) We have two equations in two unknowns, μ_{r} and $\varepsilon_{\mathrm{r}}: \eta=\sqrt{\frac{\mu_{0} \mu_{r}}{\varepsilon_{0} \varepsilon_{r}}}$ and $\beta=\omega \sqrt{\mu_{0} \mu_{r} \varepsilon_{0} \varepsilon_{r}}$

$$
\varepsilon_{r}=\frac{\beta^{2}}{\omega^{2} \mu_{0} \mu_{r} \varepsilon_{0}} \rightarrow \eta=\sqrt{\frac{\mu_{0} \mu_{r}}{\varepsilon_{0} \frac{\beta^{2}}{\omega^{2} \mu_{0} \mu_{r} \varepsilon_{0}}}}=\frac{\mu_{0} \mu_{r} \omega}{\beta} \rightarrow \mu_{r}=\frac{\eta \beta}{\omega \mu_{0}}=2.69
$$

(v) $\quad \varepsilon_{r}=\frac{\beta^{2}}{\omega^{2} \mu_{0} \mu_{r} \varepsilon_{0}}=1.7$

Question 2 20 marks

a- A linearly polarized uniform plane wave is propagating in a homogenous medium. The following information is provided:

- The operating frequency is 10 GHz .
- The attenuation constant in the medium is $4 \pi \times 10^{2}$ Nepers $/ \mathrm{mm}$.
- $|\mathrm{E}| /|\mathrm{H}|=0.0889 \Omega$.
- The magnetic field phasor lags the electric field one by 45°.
(i) What is the wavelength in the medium?
(ii) What distance must the wave propagate for its time-average power density to be reduced by 50% ?
(iii) Calculate the magnetic permeability and the conductivity of the medium?

Solution (15 Marks)

(i) The electric and magnetic field are 45° out of phase; hence, the medium is a good conductor.
Thus, it is $\beta=\alpha=4 \pi \times 10^{5} \mathrm{~m}^{-1} \rightarrow \lambda=\frac{2 \pi}{\beta}=5 \times 10^{-6} \mathrm{~m}$
(ii) $\quad\left|<S(t, z)>\left|=\frac{1}{2|\eta|}\right| E\right|^{2} e^{-2 \alpha z} \cos \theta_{\eta}$
$|<S(t, z+d)>|=0.5 \times|<S(t, z)>|$
$\therefore e^{-2 \alpha z}=0.5 \rightarrow d=\frac{-\ln 0.5}{2 \times 4 \pi \times 10^{5}}=0.2758 \mu \mathrm{~m}$
(iii) $|\eta|=\sqrt{\frac{\omega \mu}{\sigma}}=0.0889$ and $\alpha=\sqrt{\frac{\omega \mu \sigma}{2}}=4 \pi \times 10^{5}$
$\frac{\alpha}{|\eta|}=\frac{\sigma}{\sqrt{2}} \rightarrow \sigma=\sqrt{2} \frac{\alpha}{|\eta|}=2 \times 10^{7} \mathrm{~S} / \mathrm{m}$
$\alpha|\eta|=\frac{\omega \mu}{\sqrt{2}} \rightarrow \mu=\sqrt{2} \frac{\alpha|\eta|}{\omega}=25.1 \times 10^{-7} \mathrm{H} / \mathrm{m}$
b- It is required a minimum field of $0.25 \mathrm{mV} / \mathrm{m}$ for AM station covering the area of a city. What is the power density $\left(\mathrm{W} / \mathrm{m}^{2}\right)$ associated with this minimum field?

Solution (5 Marks)

Power density $=\left|<S>\left|=\frac{1}{2|\eta|}\right| E\right|^{2}$
$E=25 \mathrm{mV} / \mathrm{m},|\eta|=377 \Omega$
$|<S>|=0.829 \times 10^{-7} \mathrm{~W} / \mathrm{m}^{2}$
$\beta=\frac{\omega}{c}=\frac{3 \times 10^{9}}{3 \times 10^{8}}=10 \mathrm{rad} / \mathrm{m}$
$\widetilde{\mathbf{E}}_{i}=37.7 e^{-j \beta z^{\prime}} \overrightarrow{\mathbf{a}}_{x}=37.7 e^{-j 5 z} e^{j 8.66 y} \overrightarrow{\mathbf{a}}_{x} \mathrm{~V} / \mathrm{m}$
Using Maxwell's equation, $\boldsymbol{\nabla} \times \widetilde{\mathbf{E}}=-j \omega \mu_{0} \widetilde{\mathbf{H}}$
$\overrightarrow{\mathbf{H}}_{i}=\left[0.05 \overrightarrow{\mathbf{a}}_{y}+0.087 \overrightarrow{\mathbf{a}}_{z}\right] e^{-j 5 z} e^{j 8.66 y} \mathrm{~A} / \mathrm{m}$

$\beta \cos \left(60^{\circ}\right)=5 \mathrm{rad} / \mathrm{m} \overrightarrow{\mathrm{a}_{2}}$
$\beta \sin \left(60^{\circ}\right)=8.66 \mathrm{rad} / \mathrm{m}\left(-\overrightarrow{\mathrm{a}}_{y}\right)$
$\ddot{\mathbf{E}}_{r}=-37.7 e^{-j \beta z^{\prime \prime}} \overrightarrow{\mathbf{a}}_{x}=-37.7 e^{j 5 z} e^{j 8.66 y} \overrightarrow{\mathbf{a}}_{x} \mathrm{~V} / \mathrm{m}$
$\ddot{\mathbf{H}}_{r}=\left[0.05 \overrightarrow{\mathbf{a}}_{y}-0.087 \overrightarrow{\mathbf{a}}_{z}\right] e^{j 5 z} e^{j 8.66 y} \mathrm{~A} / \mathrm{m}$
Summing the incident and the reflected \mathbf{E} fields in free space the total $\overrightarrow{\mathbf{E}}$ field
$\widetilde{\mathbf{E}}=-37.7\left(e^{j 5 z}-e^{-j 5 z}\right) e^{j 8.66 y} \overrightarrow{\mathbf{a}}_{x}$
$=-j 75.4 \sin (5 z) e^{j 8.66 y} \overrightarrow{\mathbf{a}}_{x}$
Similarly, we obtain the total $\hat{\mathbf{H}}$ field as
$\tilde{\mathbf{H}}=0.1 \cos (5 z) e^{j 8.66 y} \overrightarrow{\mathbf{a}}_{y}-j 0.174 \sin (5 z) e^{j 8.66 y} \overrightarrow{\mathbf{a}}_{z}$
We can express these fields in the time domain as
$E_{x}(x, y, z, t)=75.4 \sin (5 z) \sin \left(3 \times 10^{9} t+8.66 y\right) \mathrm{V} / \mathrm{m}$ $H_{y}(x, y, z, t)=0.1 \cos (5 z) \cos \left(3 \times 10^{9} t+8.66 y\right) \mathrm{A} / \mathrm{m}$
$H_{z}(x, y, z, t)=0.174 \sin (5 z) \sin \left(3 \times 10^{9} t+8.66 y\right) \mathrm{A} / \mathrm{m}$
The phase velocity can be obtained by setting
$3 \times 10^{9} t+8.66 y=$ constant
differentiating with respect to t
$u_{p y}=\frac{d y}{d t}=-3.46 \times 10^{8} \mathrm{~m} / \mathrm{s}$
the wave propagates in the negative y direction.
the group velocity $u_{p y} u_{g y}=u_{p}^{2}$
$u_{g y}=-\frac{\left[3 \times 10^{8}\right]^{2}}{3.46 \times 10^{8}}=-2.6 \times 10^{8} \mathrm{~m} / \mathrm{s}$
in the negative y direction.

Q 4 - Solution
The field components for $\mathbf{T M} \mathrm{m}_{\mathrm{m}}$ mode are:

$$
\begin{gathered}
H_{y}=H_{0} \cos \left(\frac{m \pi}{b} x\right) e^{-j \beta_{z} z}, \\
E_{x}=\frac{\beta_{z}}{\omega \epsilon} H_{0} \cos \left(\frac{m \pi x}{b}\right) e^{-j \beta_{z} z}, \\
E_{z}=-\frac{m \pi}{j \omega \epsilon b} H_{0} \sin \left(\frac{m \pi x}{b}\right) e^{-j \beta_{z} z}, \\
\beta_{z}=\left[\omega^{2} \mu \epsilon-\left(\frac{m \pi}{b}\right)^{2}\right]^{\frac{1}{2}},
\end{gathered}
$$

Hence the tangential electric field \mathbf{E}_{z} is proportional to:
$\sin \left(\frac{m \pi x}{b}\right)$
Where $\mathrm{m}=2$ for the TM_{2} mode. and $\mathrm{b}=0.07 \mathrm{~m}=7 \mathrm{~cm}$.
The peaks of E_{z} occur when:

$$
\sin \left(\frac{m \pi x}{b}\right)= \pm \mathbf{1} \text { (with } \boldsymbol{x} \text { positive) }
$$

i.e. when:

$$
\left.\frac{m \pi x}{b}=(\pi / 2),(3 \pi / 2) \quad \text { (with } \mathrm{m}=2 \text { and } \mathrm{b}=7 \mathrm{~cm}\right)
$$

\therefore The first peak occurs at:
$x=(b / 4)=1.75 \mathrm{~cm}$.
and the second peak occurs at:
$x=(3 b / 4)=5.25 \mathrm{~cm}$.

