Benha University		Ordinary and partial differential equations	Code: EMM 401
Faculty of Engineering (Shoubra)		28-12-2015	
Engineering Mathematics and		Time allowed: 3 hours	
Physics Department		Scores :200 marks	

Question 1

• Discuss the solution U(x,y) of the following P.D.E. analytically:

i - $U_{tt} = c^2 U_{xx}$, 0 < x < L, with B.C.: U(0,t) = U(L,t) = 0 and I.C.: U(x,0) = f(x), $U_t(x,0) = g(x)$ ii - $U_t = c U_{xx}$, 0 < x < L, with B.C.: U(0,t) = U(L,t) = 0 and I.C.: U(x,0) = f(x).

• Derive the suitable formulas for solving the above differential equations using finite difference • If L = 1, $f(x) = \sin \pi x$, $g(x) = x^2$, solve the above differential equations numerically & analytically.

Question 2

- Find general solution of the following P.D.E. analytically
- 1) $3u_x + 4u_y 5u = 10y$
- 2) $4u_{xx} 24u_{xy} + 11u_{yy} 12u_x 9u_y 5u = 0$

• Derive the general formula to obtain u(x,y) numerically using finite difference

Question 3

Solve the I.V.P. using 2 different numerical methods

 $x^{-3}y^{-2} = -2t + x - 2y - 7$, $2x^{-2} + y^{-2} = 10t + y + 3 - t^{2}$, x(0) = 1, y(0) = -3

Board of examiners Dr. eng Khaled El Naggar

Model answer

Answer of question 1

i) We use Separation method to solve the Wave equation, so that the solution is expressed as U(x,t) = $\phi(x)\Psi(t)$, therefore $U_{xx} = \phi''(x)\Psi(t)$ and $U_{tt} = \phi(x)\Psi''(t)$, thus $c^2\phi''(x)\Psi(t) = \phi(x)\Psi''(t)$. Therefore $\frac{\phi''(x)}{\phi(x)} = \frac{1}{2^2} \frac{\psi''(x)}{\psi(x)} = -\lambda$, where λ is positive constant. Thus $\phi''(x) + \lambda \phi(x) = 0$, the characteristic equation is $m^2 + \lambda = 0$, so $\phi(\mathbf{x}) = c_1 \cos \sqrt{\lambda} \mathbf{x} + c_2 \sin \sqrt{\lambda} \mathbf{x}.$ And $\Psi''(t) + c^2 \lambda \Psi(t) = 0$, the characteristic equation is $n^2 + c^2 \lambda = 0$, so $\Psi(t) = c_3 \cos c \sqrt{\lambda} t + c_4 \sin c \sqrt{\lambda} t.$ Therefore U(x,t) = $(c_1 \cos \sqrt{\lambda} x + c_2 \sin \sqrt{\lambda} x)(c_3 \cos c \sqrt{\lambda} t + c_4 \sin c \sqrt{\lambda} t)$. But U(0,t) = 0, therefore c_1 ($c_3 \cos c\sqrt{\lambda}t + c_4 \sin c\sqrt{\lambda}t$) = 0, thus $c_1 = 0$, hence $U(x,t) = (c_2 \sin \sqrt{\lambda} x)(c_3 \cos c \sqrt{\lambda} t + c_4 \sin c \sqrt{\lambda} t).$ Since U(L,t) = 0, therefore $(c_2 \sin \sqrt{\lambda} L)(c_3 \cos c \sqrt{\lambda} t + c_4 \sin c \sqrt{\lambda} t) = 0$, but $c_2 \neq 0$, thus $\sin \sqrt{\lambda} L = 0$. 0, hence $\sqrt{\lambda} L = n \pi \Rightarrow \lambda = (\frac{n\pi}{L})^2$, n = 1, 2, 3, ... Therefore $\phi(x) = (c_2 \sin(\frac{n\pi}{L})x)$, thus U(x,t) = 0 $\sum_{n=1}^{\infty} \sin(\frac{n\pi}{L}) x \left[A_n \cos(\frac{cn\pi}{L}) t + B_n \sin(\frac{cn\pi}{L}) t \right]$ But $U(x,0) = f(x) = \sum_{n=1}^{\infty} A_n \sin(\frac{n\pi}{L})x$, which is Fourier sine series such that

$$A_{n} = \frac{2}{L} \int_{0}^{L} f(x) \sin(\frac{n\pi}{L}) x \, dx$$

Since $U_{t}(x,t) = \sum_{n=1}^{\infty} (\frac{cn\pi}{L}) \sin(\frac{n\pi}{L}) x [-A_{n} \sin(\frac{cn\pi}{L})t + B_{n} \cos(\frac{cn\pi}{L})t]$
And $U_{t}(x,0) = g(x)$, therefore $\sum_{n=1}^{\infty} B_{n}(\frac{cn\pi}{L}) \sin(\frac{n\pi}{L}) x = g(x)$, which is Fourier sine series such that $B_{n}(\frac{cn\pi}{L}) = \frac{2}{L} \int_{0}^{L} g(x) \sin(\frac{n\pi}{L}) x \, dx$, therefore

$$B_{n} = \frac{2}{cn\pi} \int_{0}^{L} g(x) \sin(\frac{n\pi}{L}) x \, dx$$
ii) We use Separation method to solve the Heat equation, so that the solution is expressed as $U(x,t) = \phi(x)\Psi(t)$, therefore $U_{xx} = \phi''(x) \Psi(t)$ and $U_{t} = \phi(x) \Psi'(t)$, thus $c\phi''(x) \Psi(t) = \phi(x) \Psi'(t)$.
Therefore $\frac{\phi''(x)}{\phi(x)} = \frac{1}{c} \frac{\psi'(x)}{\psi(x)} = -\lambda$, where λ is positive constant.
Thus $\phi''(x) + \lambda \phi(x) = 0$, the characteristic equation is $m^{2} + \lambda = 0$, so
 $\phi(x) = c_{1} \cos \sqrt{\lambda} x + c_{2} \sin \sqrt{\lambda} x$ and $\Psi'(t) + c\lambda \Psi(t) = 0$, the characteristic equation is $n + c\lambda = 0$, so
 $\Psi(t) = c_{3} e^{-c\lambda t}$
Therefore $U(x,t) = (c_{1} \cos \sqrt{\lambda} x + c_{2} \sin \sqrt{\lambda} x)(c_{3} e^{-c\lambda t})$.
But $U(0,t) = 0$, therefore $U(0,t) = (c_{1})(c_{3} e^{-c\lambda t}) = 0$, thus $c_{1}=0$, hence $U(x,t) = (c_{2} \sin \sqrt{\lambda} x)(c_{3} e^{-c\lambda t})$, and $U(L,t) = 0$, therefore: $(c_{2} \sin \sqrt{\lambda} L)(c_{3} e^{-c\lambda t}) = 0$ and $c_{2} \neq 0$, thus $\sin\sqrt{\lambda} L = 0$, hence $\sqrt{\lambda} L = n\pi \Longrightarrow \lambda = (\frac{n\pi}{L})^{2}$, $n = 1, 2, 3, \dots$ Therefore $\phi(x) = (c_{2} \sin (\frac{n\pi}{L})x)$, thus $U(x,t) = 0$.

$$\sum_{n=1}^{\infty} A_n e^{\left(-\frac{cn\pi}{L}\right)t} \sin\left(\frac{n\pi}{L}\right) x, \text{ but } U(x,0) = f(x) = \sum_{n=1}^{\infty} A_n \sin\left(\frac{n\pi}{L}\right) x, \text{ which is Fourier sine series such}$$

that $A_n = \frac{2}{L} \int_0^L f(x) \sin\left(\frac{n\pi}{L}\right) x \, dx$

• To solve the above equation numerically, we use graphical representation of partial equations such that: $u_x = \frac{u_{i+1,j} - u_{i,j}}{h} = \frac{u_{i,j} - u_{i-1,j}}{h}$, $u_y = \frac{u_{i,j+1} - u_{i,j}}{k} = \frac{u_{i,j} - u_{i,j+1}}{k}$, $u_{xx} = \frac{u_{i+1,j} - 2u_{i,j} + u_{i-1,j}}{h^2}$, $u_{yy} = \frac{u_{i,j+1} - 2u_{i,j} + u_{i,j+1}}{k^2}$, $u_{xy} = \frac{u_{i+1,j+1} - u_{i-1,j+1} - u_{i+1,j+1} + u_{i-1,j+1}}{4hk}$, but $U_{tt} = c^2 U_{xx}$, therefore $\frac{u_{i,j+1} - 2u_{i,j} + u_{i,j+1}}{k^2} = c^2 \frac{u_{i+1,j} - 2u_{i,j} + u_{i-1,j}}{h^2}$ and for $U_t = c U_{xx}$, therefore $\frac{u_{i,j+1} - 2u_{i,j} + u_{i,j+1}}{k^2} = c^2 \frac{u_{i+1,j} - 2u_{i,j} + u_{i-1,j}}{h^2}$

Answer of question 2

1) Consider homogeneous partial differential equation:

$$au_x + b u_y + cu = g(x,y)$$

The solution will be in the form: $w_{\alpha} + k = g(\alpha, \beta)$ such that:

 $\alpha = x\cos\theta + y\sin\theta$, $\beta = -x\sin\theta + y\cos\theta$

$$u_x = u_{\alpha} \alpha_x + u_{\beta} \beta_x = u_{\alpha} \cos \theta - u_{\beta} \sin \theta$$

$$u_y = u_{\alpha} \alpha_y + u_{\beta} \beta_y = u_{\alpha} \sin \theta + u_{\beta} \cos \theta$$

Substitute in the above P.D.E. so that:

 $a(w_{\alpha}\cos\theta - w_{\beta}\sin\theta) + b(w_{\alpha}\sin\theta + w_{\beta}\cos\theta) + cw = w(\alpha,\beta)$

Coefficient of $w_{\beta} = 0$, therefore $-a \sin \theta + b \cos \theta = 0$, thus $\tan \theta = b/a$, $\sin \theta = \frac{b}{\sqrt{a^2 + b^2}}$ and $\cos \theta = b/a$.

$$\frac{a}{\sqrt{a^2+b^2}}$$

Therefore $\sqrt{a^2 + b^2} w_{\alpha} + cw = w(\alpha, \beta)$ which is linear D.E. such that the solution will be in the form:

we^{$$\int \frac{c}{\sqrt{a^2+b^2}}d\alpha = \int \frac{w(\alpha,\beta)}{\sqrt{a^2+b^2}}e^{\int \frac{c}{\sqrt{a^2+b^2}}d\alpha}d\alpha + \phi(\beta)$$}

Where a = 3, b = 4, c = -5 and $g(x,y) = 10y, \sin \theta = \frac{4}{5}, \cos \theta = \frac{3}{5}$, and $5\alpha = 3x + 4y, 5\beta = -4x + 3y$ therefore $w(\alpha,\beta) = 10y = 8\alpha + 6\beta \implies 5 w_{\alpha}-5w = 8\alpha + 6\beta$ $\Rightarrow w e^{-\alpha} = \int \frac{8\alpha + 6\beta}{5} e^{-\alpha} d\alpha + \phi(\beta).$

2) $au_{xx} + b u_{xy} + cu_{yy} + hu_x + k u_y + eu = 0$

Let the general solution of the above equation is $u(x,y) = f(x + \lambda y) = f(v)$, where $v = x + \lambda y$, thus

$$u_{x} = \frac{du}{dv}v_{x} = \frac{du}{dv}, u_{xx} = \frac{d^{2}u}{dv^{2}}(v_{x})^{2} + \frac{du}{dv}v_{xx} = \frac{d^{2}u}{dv^{2}},$$
$$u_{xy} = \frac{d^{2}u}{dv^{2}}v_{x}v_{y} + \frac{du}{dv}v_{xy} = \frac{d^{2}u}{dv^{2}}\lambda$$
$$u_{y} = \frac{du}{dv}v_{y} = \frac{du}{dv}\lambda, u_{yy} = \frac{d^{2}u}{dv^{2}}(v_{y})^{2} + \frac{du}{dv}v_{yy} = \frac{d^{2}u}{dv^{2}}\lambda^{2}$$

By taking the homogeneous part $au_{xx} + b u_{xy} + cu_{yy} = 0$, we will get

 $a + b\lambda + c\lambda^2 = 0$, where λ_1 , λ_2 are the two roots of the characteristic equation.

Where a = 4, b = -24, c = 11, h = -12, k = -9, e = -5, therefore $11\lambda^2 - 24\lambda + 4=0$, hence $\lambda = 2$ or $\lambda = 2/11$ from which the general solution of the above equation is $u(x,y) = c_1 f(x+2y) + c_2 f(x+(2/11)y)$

• To solve the above equation numerically, we use graphical representation of partial equations such that: $u_x = \frac{u_{i+1,j} - u_{i,j}}{h} = \frac{u_{i,j} - u_{i-1,j}}{h}$, $u_y = \frac{u_{i,j+1} - u_{i,j}}{k} = \frac{u_{i,j} - u_{i,j-1}}{k}$,

$$\begin{split} u_{xx} &= \frac{u_{i+1,j} - 2u_{i,j} + u_{i-1,j}}{h^2}, \ u_{yy} = \frac{u_{i,j+1} - 2u_{i,j} + u_{i,j+1}}{k^2}, \quad u_{xy} = \frac{u_{i+1,j+1} - u_{i-1,j+1} - u_{i+1,j+1} + u_{i-1,j+1}}{4hk}, \ but \quad au_x + bu_{xy} + cu = g(x,y), \ therefore \quad a \ \left[\frac{u_{i+1,j} - u_{i,j}}{h}\right] + b\left[\frac{u_{i,j+1} - u_{i,j}}{k}\right] + cu_{i,j} = g(x_i,y_j) \ and \ for \quad a \ u_{xx} + b \ u_{xy} + cu_{xy} + cu_{xy} + cu_{xy} + bu_{xy} + cu_{xy} + cu_{xy} + bu_{xy} +$$

Answer of question 3

$$\begin{aligned} \mathbf{x} &= \mathbf{x}^2 - 2\mathbf{t}\mathbf{x} + \mathbf{y} - 2\mathbf{t} = \mathbf{f}(\mathbf{x}, \mathbf{y}, \mathbf{t}), \ \mathbf{y} = \mathbf{y} - \mathbf{z}^2 - 2\mathbf{t}\mathbf{x} + 2\mathbf{t} + 3 = \phi(\mathbf{x}, \mathbf{y}, \mathbf{t}), \ \mathbf{x}_0 = 2, \ \mathbf{y}_0 = 3, \ \mathbf{t}_0 = 1 \\ y_{i+1} &= y_i + (h/2)[\phi(t_i, \mathbf{x}_i, \mathbf{y}_i) + \phi(t_{i+1}, \mathbf{x}_i + hf(t_i, \mathbf{x}_i, \mathbf{y}_i), \mathbf{y}_i + h\phi(t_i, \mathbf{x}_i, \mathbf{y}_i))] \\ \text{Put } \mathbf{i} = 0, \text{ therefore } \mathbf{y}_1 &= \mathbf{y}_0 + (h/2)[\phi(t_0, \mathbf{x}_0, \mathbf{y}_0) + \phi(t_1, \mathbf{x}_0 + hf(t_0, \mathbf{x}_0, \mathbf{y}_0), \mathbf{y}_0 + h\phi(t_0, \mathbf{x}_0, \mathbf{y}_0))] = 2.9585 \\ 2\text{-ii}) \qquad \mathbf{y}_{n+1} &= \mathbf{y}_0 + \int_{t_0}^{t} (\mathbf{x}_n \mathbf{z}_n + 28\mathbf{x}_n - \mathbf{y}_n) \, d\mathbf{t}, \qquad \mathbf{x}_{n+1} &= \mathbf{x}_0 + \int_{t_0}^{t} -10(\mathbf{x}_n - \mathbf{y}_n) \, d\mathbf{t} \quad , \qquad \mathbf{z}_{n+1} = \mathbf{z}_0 \\ &+ \int_{t_0}^{t} (\mathbf{x}_n \mathbf{y}_n - 8\mathbf{z}_n/3) \, d\mathbf{t}, \ \mathbf{y}_0 &= -1, \ \mathbf{x}_0 = 2, \ \mathbf{t}_0 = 0, \ \mathbf{z}_0 = 3, \ \mathbf{thus} \ \mathbf{x}_1 &= \mathbf{x}_0 + \int_{t_0}^{t} -10(\mathbf{x}_0 - \mathbf{y}_0) \, d\mathbf{t} \quad , \qquad \mathbf{y}_1 = \mathbf{y}_0 \end{aligned}$$

$$+ \int_{t_0}^{t} (x_0 z_0 + 28x_0 - y_0) dt \text{ and } z_1 = z_0 + \int_{t_0}^{t} (x_0 y_0 - 8z_0/3) dt, \text{ therefore } x_1 = 2-30t, \qquad y_1 = -1+51t, z_1$$

$$= 3-10t. \text{ Similarly}, \qquad x_2 = x_0 + \int_{t_0}^{t} -10(x_1 - y_1) dt, \qquad y_2 = y_0 + \int_{t_0}^{t} (x_1 z_1 + 28x_1 - y_1) dt \text{ and } z_2 = z_0$$

$$+ \int_{t_0}^{t} (x_1 y_1 - 8z_1/3) dt, \text{ therefore } x_2 = 2 - 30t + 405t^2, y_2 = -1+51t - (781/2)t^2 - 100t^3, z_2 = 3-10t + (238/3)t^2 - 510t^3.$$

 $2^{nd}: \underline{using \ Euler}, \quad x_{n+1} = x_n + h \ [-10(x_n - y_n)], \\ y_{n+1} = y_n + h \ [-x_n \ z_n + 28 \ x_n - y_n], \\ thus \quad x_1 = x_0 + h [-10(x_0 - y_0)] = 0.5 = x(0.05), \\ y_1 = y_0 + h \ [-x_0 \ z_0 + 28 \ x_0 - y_0] = 1.55 = y(0.05), \\ therefore \ x(0.1) = x_2 = x_1 + h [-10(x_1 - y_1)] = 1.025$

1. Overall aims of course

By the end of the course the students will be able to:

- Solve ordinary and partial differential equations numerically
- Recognize finite difference method in solving P.D.E.
- Describe error analysis and stability for P.D.E.

2. Intended Learning outcomes of Course (ILOs)

a. Knowledge and Understanding:

- 2.1.1 Identify theories, fundamentals of ordinary and partial differential equations [Q1, Q2, Q3]
- 2.1.3 Recognize the developments of finite difference method in solving P.D.E. [Q1, Q2]
- 2.1.4 Summarize the moral and legal principles of error analysis and stability [Q1, Q2]

b. Intellectual Skills

2.2.5 Assess solutions of partial differential equations using finite difference method. [Q1, Q2]

c. Professional and Practical Skills

2.3.1 Interpret professional skills in estimating error analysis and stability. [Q1, Q2]

d. General and Transferable Skills

2.4.1 Communicate effectively using researches of new topics about solutions of ordinary and partial differential equations .

2.4.5 Assess the performance of error analysis and stability

2.4.6 Work in a group and manage time effectively