LAB.EXP (1)

DETERMINATION OF NORMALITY OF SODIUM HYDROXIDE (NaOH) BY USING STANARD SOLUTION OF HYDROCHLORIC ACID (HCI)

PERFORMANCE OBJECTIVE

Upon completion of this laboratory experiment, the student technician will be able to calculate the normality of base (soduim hydroxide).

EQUIPMENT

- 1. Burette (50 ml)
- 2. Burette stand and clamp
- **3.** Pipette (10 ml)
- 4. Beaker (50 ml)
- 5. Conical flask (100 ml)

MATERIALS

- 1. Base with unknown normality (NaOH)
- 2. Acid with known normality (HCl)
- 3. Indicator methyl orange (M.O.) or phenolphthalein (ph.ph.)

PROCEDURE

- 1. Put acid with known N (HCl) in the burette.
- 2. Measure 10 ml of base with unknown normality (NaOH) by pipette in the flask.
- 3. Add about 3 drops of indicator (ph.ph. or M.O.)and observe the color of solution.
- 4. Record the level of acid at burette in Table 1 (first reading).
- 5. Start adding acid from burette drop by drop and observe the end point by changing the color of indicator.
- 6. Record the second reading of burette in Table 1.
- 7. Measure the volume of acid which neutralized 10 ml of base.
- 8. Repeat steps 1 to 6 two times and record your result in Table 1
- 9. Calculate the mean volume of acid.
- 10. Calculate the normality of unknown base from equation

$(N \times V)_{HCI} = (N \times V)_{NaOH}$

N_{HCI} is the normality of acid

 $\boldsymbol{\mathsf{N}}_{\ensuremath{\mathsf{NaOH}}}$ is the normality of base

V_{HCI} is the volume of acid

 $\mathbf{V}_{\mathbf{NaOH}}$ is the volume of base

INDICATORS	Volumeof base (v₀)	Normality of acid (N₃)	Volume of acid (V₃)		Mean volume of acid (V _{av})	Normality of base N _b = $\frac{N_a \times V_a}{V_b}$	
			1^{st} reading V_1	2^{nd} reading V_2	V		
alein							
olphth							
phen							
nge							
hyl ora							
met							

LAB.EXP (2)

DETERMINATION OF NORMALITY OF SODIUM CARBONATE (Na₂CO₃) BY USING STANARD SOLUTION OF HYDROCHLORIC ACID (HCI)

PERFORMANCE OBJECTIVE

Upon completion of this laboratory experiment, the student technician will be able to calculate the normality of base (sodium carbonate).

EQUIPMENT

- 1. Burette (50 ml)
- 2. Burette stand and clamp
- **3.** Pipette (10 ml)
- 4. Beaker (50 ml)
- 5. Conical flask (100 ml)

MATERIALS

- 1. Base with unknown normality (Na₂CO₃)
- 2. Acid with known normality (HCl)
- 3. Indicator methyl orange (M.O.) or phenolphthalein (ph.ph.)

PROCEDURE

- 1. Put acid with known N (HCl) in the burette.
- 2. Measure 10 ml of base with unknown normality (Na₂CO₃) by pipette in the flask.
- 3. Add about 3 drops of indicator (ph.ph. or M.O.)and observe the color of solution.
- 4. Record the level of acid at burette in Table 1 (first reading).
- 5. Start adding acid from burette drop by drop and observe the end point by changing the color of indicator.
- 6. Record the second reading of burette in Table 1.
- 7. Measure the volume of acid which neutralized 10 ml of base.
- 8. Repeat steps 1 to 6 two times and record your result in Table 1
- 9. Calculate the mean volume of acid.
- 10. Calculate the normality of unknown base from equation

(N x V) $_{HCI}$ =(N x V) $_{Na_2CO_3}$

 $\mathbf{N}_{\mathbf{HCI}}$ is the normality of acid

 $\boldsymbol{N}_{\text{ Na2CO3}}$ is the normality of base

 $\boldsymbol{V}_{\boldsymbol{\mathsf{HCI}}}$ is the volume of acid

 $\boldsymbol{V}_{\text{Na2CO3}}$ is the volume of base

INDICATORS	Volumeof base (v₀)	Normality of acid (N _a)	Volume of acid (V₃)		Mean volume of acid (V _{av})	Normality of base N _b = $\frac{N_a \times V_a}{V_b}$	
			1 st reading	2 nd reading	V		
			V ₁	V ₂			
alein							
olphth							
phene							
nge							
nyl ora							
met							

LAB.EXP (3)

ACID BASE TITRATION USING THE pH METER AND pH paper

PERFORMANCE OBJECTIVE

Upon completion of this laboratory experiment, the student technician will be able to titrate an acid and base using a pH meter and paper.

EQUIPMENT

- 1. Burette (50 ml)
- 2. Pipette (5 ml)
- 3. pH meter
- 4. pH paper

MATERIALS

- 1. Base with unknown normality (Na₂CO₃)
- 2. Acid with known normality (HCl)
- 3. Universal indicator chart.

DISCUSSION

pH paper

Paper strips that have been treated with a mixture of indicators which used to estimate the pH of a solution. The indicators are chosen so that each one will change color at a different pH. The pH estimated by moistening the paper with being tested, then matching its color with a color on a chart provided by the manufacture of the paper.

pH meter

A pH meter and its electrode form a sensitive electrochemical device that makes possible the accurate measurement of the pH of a solution. Any pH meter is just a voltammeter that measures the voltage of an electric current flowing through a solution between two electrodes, one of them is called a **glass electrode** and this is sensitive to the concentration of H_3O^+ ions in the solution, the other electrode is called the **Reference electrode** which its operation is independent of the composition of the solution. There is a direct relationship between the voltage and the pH of the solution;

as a result the meter on the instrument is calibrated directly in pH units rather than volts.

PROCEDURE

- 1. Take 5 ml of NaOH solution of unknown concentration in a clean beaker of 50 ml.
- 2. Immerse the pH paper into a solution for few seconds.
- 3. Match the color of pH paper with the universal indicator chart and note the pH.
- 4. Add 0.5 ml of HCl solution in the beaker by pipette or burette and shake the reaction mixture.
- 5. Again immerse the pH paper in to the reaction mixture and note the pH on each addition of 0.5 ml of HCl record the pH in table 1.
- 6. Plot the graph between the added volume of HCl and pH.
- 7. Conduct a similar experiment as above but use a pH meter for pH determination instead of pH paper.
- 8. Find the volume of HCl used at pH =7 (equivalence point) from the graph.
- 9. Calculate the normality of the unknown base using the equation

$$N_a x V_a = N_b x V_b$$

N_a is the normality of acid

 ${f N}_b$ is the normality of base

V_a is the volume of acid from graph

 V_{b} is the volume of base

Test	Volume of base (ml)	Volume (ml) of	pH by pH paper	pH by pH meter
No.	unknown conc.	0.1M HCl		
1		0.00		
2		0.5		
3		1.0		
4		1.5		
5		2.0		
6		2.5		
7		3.0		
8		3.5		
9		4.0		
10	5 ml	4.5		
11		5.0		
12		5.5		
13		6.0		
14		6.5		
15		7.0		
16		7.5		
17		8.0		
18		8.5		
19		9.0		
20		9.5		
21		10.0		

LAB.EXP (4)

DETERMINATION OF THE CHANGE OF ENTHALPY OF NEUTRALIZATION OF HYDROCHLORIC ACID (HCI) WITH SODIUM HYDROXIDE(NaOH)

PERFORMANCE OBJECTIVE

Upon completion of this laboratory experiment, the student technician will be able to measure the enthalpy change accompanying neutralization reactions using a calorimeter.

EQUIPMENT

- **1.** Bunsen burner
- 2. Graduated cylinder (50 ml)
- 3. Beaker (250 ml) &(100 ml)
- 4. Thermometer (25ml)

MATERIALS

- 1. Sodium hydroxide solution (1.00M)
- 2. Hydrochloric acid solution (1.00M)

PROCEDURE

- 1. Place exactly 25 ml of 1m HCl in the calorimeter. Allow 5 to 10 minutes for the system to reach the final thermal equilibrium, and then record the temperature.
- 2. Place exactly 25 ml of 1M NaOH in another beaker, measure the temperature.
- 3. The temperatures of HCl and NaOH should not differ by more than 0.5°C.
- 4. Holding thermometer in the calorimeter, add NaOH into the calorimeter. Stir the thermometer gently and record the highest temperature observed.

Tabulate your data as follows:

- 1. Temperature of HCl solution (T_a) =-----°C.
- 2. Temperature of NaOH solution (T_b) =-----°C.
- **3.** Average temperature of above solution, if different $T = T_a + T_b / 2 = ----°C$.

- **4.** Highest temperature observed after mixing acid with base **T**_m =-----°C.
- 5. Change in temperature $\Delta T = T_m T = -----°C$.
- 6. Weight of empty conical W₁ =-----gm
- 7. Weight of solution w_{soln}=-----gm

CALCULATION

- **1.** Heat gained by solution =ΔT x S x m =-----Cal
- **2.** Heat gained by calorimeter =ΔT x S x m =-----Cal
- 3. Heat gained by solution and calorimeter =-----Cal
- **4.** Moles of water produced by the reaction **= molarity x volume (L)**

=-----mole

5. ΔH = heat of neutralization =

q / no. of mole of H₂O produced.=-----Cal / mol

LAB.EXP (5)

FACTOR AFFECTING REACTION RATE

(I.EFFECT OF CONCENTRATION)

PERFORMANCE OBJECTIVE

Upon completion of this laboratory experiment, the student technician will be able to verify the relationship between the rate of the reaction and the concentration of the reactant.

EQUIPMENT

- 1. Test tube
- 2. Graduated pipettes (10ml)
- 3. Stop watch

MATERIALS

- 1. Sodium thiosulphate solution of the following concentration : 0.05M , 0.1M ,0.15M, 0.2M, 0.25M and 0.3 M
- 2. Nitric acid solution (0.2M)

PROCEDURE

- 1. Transfer exactly 2.0 ml of 0.05 M sodium thiosulphate solution into one test tube by means of a pipette.
- 2. Into another test tube, transfer exactly 2.0 ml of 0.2M nitric acid.
- 3. Pour the test tube of acid into the test tube of thiosulphate. Mix well for one second and simultaneously start a stop watch.
- 4. Place the test tube against awritten paper and note the time required to obscure the writing on the paper. Record this time in seconds in your notebook.
- 5. Repeat the above procedure twice for each thiosulphate concentration. Record the time required for each experiment qand calculates the average time required for each concentration.

RESULTS

- 1. Record the time required for each experiment in second in table 1.
- 2. Calculate the average time required for each thiosulphate concentration.
- 3. Calculate the rate of the reaction as the reciprocal of reaction time and plot on a grah sheet the rate against concentration of sodium thiosulphate.

Run No.	Na ₂ S ₂ O ₃ M	Seconds, Reaction Time			Rate =1/t Second⁻ ¹
		Test I seconds	Test II seconds	Average Time (t) seconds	
1	0.05				
2	0.10				
3	0.15				
4	0.20				
5	0.25				
6	0.30				

LAB.EXP (6)

CHEMICAL TEST FOR ANION

PERFORMANCE OBJECTIVE

Upon completion of this laboratory experiment, the student technician will be able to perform different chemical tests to identify anions.

EQUIPMENT

1. Test tube

4. Test tube brush 5. Bunsen burner

- 2. Droppers
- **3.** Test tube holder

MATERIALS

- 1. Sodium chloride solution (0.10M)
- 2. Sodium bromide solution (0.10M)
- 3. Sodium iodide solution (0.10M)
- 4. Sodium hydroxide solution (0.10M)
- 5. Sodium hydroxide solution (6M)
- 6. Sodium carbonate solution (0.10M)
- 7. Sodium sulfate solution (0.10M)
- 8. Silver nitrate solution(0.10M)
- 9. Ferrous sulfate solution (0.10M)
- 10. Sodium carbonate solution (0.05M)
- 11. Sodium sulfide solution (0.01 M)
- 12. Nitric acid solution(2M)
- 13. Hydrochloric acid solution (1M)
- 14. Barium chloride solution (saturated)

- 15. Barium chloride solution(2M)
- 16. Sulfuric acid (concentrated)
- 17. Sodium nitrate solution(1M)
- 18.Ammonium nitrate solution(1M)
- 19. Lead nitrate moistened paper
- 20. Sodium sulfide solution(0.1M)
- 21. Ammonium molybdate solution
- 22. Nitric acid (concentrated)
- 23. Sodium bicarbonate solution
- 24. Magnesium sulfate solution
- 25. Potassium dichromate solution
- 26. Mercuric chloride solution
- 27. Ammonia solution(1M)
- 28. Strontium chloride solution
- 29. Diphenylamine solution

DISCUSSION

The salts which soluble in water consist of positive ions (cations) and negative ions (anions). In these experiments, the student will perform simple chemical tests to identify some of the common non-metallic negative ions (anions).

Acidic radicals (Anions) to be studied are classified into three groups as shown in the following table.

Group Number	Name of Group	Group Reagent	Acidic Radical (Anions)
I	Dilute Hydrochloric acid group	Dil. HCl	Carbonate $CO_3^{2^-}$ Bicarbonate HCO_3^- Sulphide S^{2^-} Sulphite $SO_3^{2^-}$ Thiosulphate $S_2O_3^{2^-}$ Nitrate NO_2^-
II	Concentrated Sulphuric acid group	Conc. H ₂ SO ₄	Chloride Cl ⁻ Bromide Br ⁻ Iodide I ⁻ Nitrate NO₃ ⁻
111	Miscellaneous group	AgNO ₃	Sulphate SO4 ²⁻ Phosphate PO4 ⁻ Borate B4O7 ²⁻

GROUP I: Dil HCl group

Test	Carbonate CO ₃ ²⁻	Bicarbonate HCO ₃ -
Solid salt + Dilute Hydrochloric acid	Effervescence and evolution of CO_2 gas indicate the presence of carbonate or bicarbonate $.CO_2$ gas may be detected by passing it through lime water which turbid lime water $Na_2CO_3 + 2HCI \longrightarrow 2NaCI + H_2O + CO_2$ $CO_2 + Ca(OH)_2 \longrightarrow CaCO_3 + H_2O$	Effervescence and evolution of CO_2 gas indicate the presence of carbonate or bicarbonate .CO ₂ gas may be detected by passing it through lime water which turbid lime water NaHCO3 + 2HCI \longrightarrow 2NaCl + H ₂ O + CO ₂ CO ₂ + Ca(OH) ₂ CaCO ₃ + H ₂ O
Salt solution +	White precipitate formed	White precipitate formed on heating
Barium Chloride (BaCl ₂)	$BaCl_2 + Na_2CO_3 \longrightarrow BaCO_3 + 2NaCl$	$BaCl_2 + NaHCO_3 \longrightarrow Ba(HCO_3)_2 + 2NaCl$
Salt solution +	White precipitate formed	White precipitate formed on heating
Silver nitrate	$2AgNO_3 + Na_2CO_3 \longrightarrow Ag_2CO_3 + 2NaNO_3$	$2AgNO_3 + NaHCO_3 \longrightarrow AgHCO_3 + 2NaNO_3$
(AgNO ₃)		
Salt solution	White precipitate formed	White precipitate formed on heating
Pb(CH ₃ COO) ₂		2CH ₃ COONa
Salt solution	White precipitate formed	White precipitate formed on heating
+Calcium Chloride (CaCl ₂)	$CaCl_2 + Na_2CO_3 \longrightarrow CaCO_3 + 2NaCl$	CaCl ₂ + NaHCO ₃ — ► Ca(HCO ₃) ₂ + 2NaCl
Salt solution	White precipitate formed	White precipitate formed on heating
+Magnesium Sulfate (MgSO₄)	$MgSO_4 + Na_2CO_3 \longrightarrow MgCO_3 + Na_2SO_4$	$MgSO_4 + NaHCO_3 \longrightarrow Mg(HCO_3)_2 + Na_2SO_4$
Salt solution	Reddish brown precipitate formed	Reddish brown precipitate formed on heating
+Mercuric	$4HgCl_2 + Na_2CO_3 \longrightarrow Hg_4O_3.CO_3 + 8 NaCl + 3CO_3$	
Chloride(HgCl ₂)		$HgCl_2 + NaHCO_3 \longrightarrow Hg(HCO_3)_2 + 2 NaCl$

Test	Sulphide S ²⁻	Sulphite SO ₃ ²⁻	Thiosulphate S ₂ O ₃ ²⁻
Solid salt + Dilute Hydrochloric acid	H ₂ S gas evolved with rotten egg smell. Na ₂ S + 2HCl → 2NaCl + H ₂ S	H ₂ S gas evolved with pungent smell. It turn filter paper with acidified dichromate to green Na ₂ SO ₃ + 2HCl \longrightarrow 2NaCl + H ₂ O + SO ₂ K ₂ Cr ₂ O ₇ + SO ₂ + H ₂ SO ₄ \longrightarrow K ₂ SO ₄ + Cr ₂ (SO ₄)+4H ₂ O	SO ₂ gas evolved with pungent smell. Solution turns yellowish white due to formation of colloidal sulfur. Na ₂ S ₂ O ₃ + 2HCl \longrightarrow 2NaCl + H ₂ O + SO ₂ + S
Salt solution + Silver nitrate (AgNO₃)	Black precipitate formed 2AgNO ₃ + Na ₂ S → Ag ₂ S + 2NaNO ₃	White precipitate formed 2AgNO ₃ + Na ₂ SO ₃ → Ag ₂ SO ₃ + 2NaNO ₃	White precipitate formed 2AgNO ₃ + Na ₂ S ₂ O3 → Ag ₂ S ₂ O ₃ + 2NaNO ₃
Salt solution +Lead Acetate [Pb(CH ₃ COO) ₂]	Black precipitate formed Pb(CH ₃ COO) ₂ + Na ₂ S → PbS + 2CH ₃ COONa	White precipitate formed Pb(CH ₃ COO) ₂ + Na ₂ SO ₃ → PbSO ₃ 2CH ₃ COONa	White precipitate formed $Pb(CH_3COO)_2 + Na_2S_2O_3 \longrightarrow$ $PbS_2O_3 + 2CH_3COONa$ $PbS_2O_3 + H_2O \longrightarrow PbS + H_2SO_4$
Salt solution + Sodium Nitroprusside Na₂[Fe(CN)₅(NO)]	Purple color formed Na ₂ [Fe(CN) ₅ (NO)] + Na ₂ S \longrightarrow Na ₄ [Fe(CN) ₅ (NOS)]		
Salt solution +Cadmium Sulphate (CdSO4)	Yellow precipitate formed $CdSO_4 + Na_2S \longrightarrow Na_2SO_4 + CdS$		
Salt solution + Potassium permagnate(KMnO₄)		Purple color disappearance $5Na_2SO_3 + 3KMnO_4 + 3H_2SO_4 \rightarrow 2MnSO_4 + 5Na_2SO_4 + 3H_2O + K_2SO_4$	Purple color disappearance $5Na_2S_2O_3 + 3KMnO_4 + 3H_2SO_4 \rightarrow$ $2MnSO_4 + 5Na_2SO_4 + 3H_2O + K_2SO_4$
Salt solution + Potassium Dichromate (K ₂ Cr ₂ O ₇)		Purple color disappearance $3Na_2SO_3 + 3K_2Cr_2O_7 + 8H_2SO_4 \rightarrow$ $2Cr(SO_4)_3 + 3Na_2SO_4 + 3H_2O +$ K_2SO_4	
Salt solution + Barium Chloride (BaCl ₂)			White precipitate formed BaCl ₂ + Na ₂ S ₂ O ₃ \longrightarrow BaS ₂ O ₃ +2NaCl

Test	Nitrate NO ₂
Solid salt + Dilute	A brown fumes of nitrogen
Hydrochloric acid	oxide are formed
	Na₂NO₂+ 2HCl → 2NaCl + NO
	+ NO ₂
Salt solution +	White precipitate formed
Silver nitrate (AgNO₃)	$AgNO_3 + NaNO_2 \longrightarrow AgNO_2 +$
	NaNO ₃
Salt solution + Potassium	Purple color disappearance
permagnate(KMnO ₄)	$5NaNO_2 + 2KMnO_4 + 3H_2SO_4 \longrightarrow$
	2MnSO ₄ + 5NaNO ₃ + 3H ₂ O+ K ₂ SO ₄
Salt solution + Ferrous	A brown ring formed.
Sulfate(FeSO ₄)	$2NaNO_2 + 2 FeSO_4 + 3H_2SO_4 \longrightarrow$
	Fe(SO ₄) ₃ + 2NaHSO ₄ + 2H ₂ O+ 2NO
	$NO(g) + FeSO_4 \longrightarrow [Fe(NO)]SO_4$
Salt solution	Blue color formed.
+Diphenylamine	

LAB.EXP (7)

CHEMICAL TEST FOR ANION

GROUP II&III

GROUP II:Conc. Sulphuric Acid (H₂SO₄)

Test	Chloride Cl ⁻	Bromide Br ⁻
Solid salt + Conc.	HCl gas evolved which detected by forming white	Reddish brown fumes of Br ₂
Sulphuric Acid (H ₂ SO ₄)	fumes with NH₄OH	NaBr + $H_2SO_4 \longrightarrow 2HBr + Na_2SO_4$
	$2NaCl + H_2SO_4 \longrightarrow 2HCl + Na_2SO_4$	
Salt solution +	White precipitate formed	Pale yellow precipitate formed
Silver nitrate (AgNO₃)	$AgNO_3 + NaCl \longrightarrow AgCl + NaNO_3$	AgNO ₃ + NaBr → AgBr + NaNO ₃
Salt solution +Lead	White precipitate formed	White precipitate formed
Acetate [Pb(CH ₃ COO) ₂]	$Pb(CH_3COO)_2 + NaCl \longrightarrow PbCl_2 + 2CH_3COONa$	$Pb(CH_3COO)_2 + NaBr \longrightarrow PbBr_2 + 2CH_3COONa$
Salt solution +Magnesium	Cl₂gas evolves which detected by its yellowish	Br ₂ gas evolves which detected by its reddish
dioxide and Conc. H ₂ SO ₄	green color	brown color
	$2NaCl + MnO_2 + 2H_2SO_4 \longrightarrow MnSO_4 + Na_2SO_4 +$	$2NaBr+MnO_2 + 2H_2SO_4 \longrightarrow MnSO_4 + Na_2SO_4 +$
	2H ₂ O+ Cl ₂	2H ₂ O+ Br ₂
Salt solution + Carbon		Carbon disulphide layer turns orange
disulphide		

Tet	Iodide I ⁻	Nitrate NO ₃ -
Solid salt + Conc.	Violet fumes of I ₂ are evolved	Reddish brown vapor of NO ₂ gas are evolved
Sulphuric Acid (H ₂ SO ₄)	$2NaI + H_2SO_4 \longrightarrow 2HI + Na_2SO_4$	$4NaNO_3 + H_2SO_4 \longrightarrow 4NO_2 + O_2 + 2NaSO_4 +$
	$4HI + O_2 \longrightarrow 2I_2 + 2H_2O$	2H ₂ O
Salt solution +	yellow precipitate formed	
Silver nitrate (AgNO ₃)	$AgNO_3 + Nal \longrightarrow AgI + NaNO_3$	
Salt solution +Lead	Yellow precipitate formed	
Acetate [Pb(CH ₃ COO) ₂]	$Pb(CH_3COO)_2 + Nal \longrightarrow Pbl_2 + 2CH_3COONa$	
Salt solution +Magnesium	I ₂ gas evolves which detected by its violet color	
dioxide and Conc. H ₂ SO ₄	$2Nal+MnO_2 + 2H_2SO_4 \longrightarrow MnSO_4 + Na_2SO_4 +$	
	2H ₂ O+ I ₂	
Salt solution + Carbon	Carbon disulphide layer turns violet	
disulphide		
Salt solution +Mercuric	Red precipitate formed	
Chloride(HgCl ₂)	$2Nal + HgCl_2 \longrightarrow Hgl_2 + 2NaCl$	
Salt solution + copper	Brown precipitate formed	
sulphate CuSO ₄	$CuSO_4 + 4KI \longrightarrow Cu_2I_2 + I_2 + 2K_2SO_4$	
Salt solution +		Blue color ring at the interface of the two liquid
Diphenylamine		phases formed

Brown ring test	Brown ring formed
	2NaNO ₃ + 6 FeSO ₄ + 4H ₂ SO ₄ → 3Fe ₂ (SO ₄) ₃ +
	 3Fe ₂ (SO ₄) ₃ + Na ₂ SO ₄ + H ₂ O+ 2NO

GROUP III: Miscellaneous Group

Test	Sulphate SO ₄ ²⁻	Phosphate PO ₄ -	Borate B ₄ O ₇ ²⁻
Salt solution + Silver nitrate (AgNO₃)	White precipitate formed 2AgNO ₃ + Na₂SO ₄ → Ag₂SO ₄ + 2NaNO ₃	Canary yellow precipitate formed 2AgNO ₃ + NaHPO ₄ → 3AgHPO ₄ + 2NaNO ₃	Canary yellow precipitate formed $4AgNO_3 + Na_2B_4O_7 + H_2O \longrightarrow$ $4AgBO_2 + 2NaNO_3 + 2HNO_3$
Salt solution + Barium Chloride (BaCl ₂)	White precipitate formed BaCl ₂ + Na ₂ SO ₄ \longrightarrow BaSO ₄ + 2NaCl	White precipitate formed BaCl ₂ + NaHPO ₄ BaHPO ₄ + 2NaCl	White precipitate formed $2BaCl_2 + NaB_4O_7 + H_20 \longrightarrow$ $Ba(BO_2)_2 + 2NaCl + 2HCl$
Salt solution +Lead Acetate [Pb(CH ₃ COO) ₂]	White precipitate formed Pb(CH ₃ COO) ₂ + Na ₂ SO ₄ → PbSO ₄ + 2CH ₃ COONa		
Salt solution + Strontium Chloride (SrCl ₂)	White precipitate formed $SrCl_2 + Na_2SO_4 \longrightarrow SrSO_4 + 2NaCl$		
Salt solution + Ferric chloride (FeCl₃)		Yellowish white precipitate formed NaHPO₄ + FeCl ₃ → FePO4 + HCl + 3NaCl	·
Salt solution + Ammonium Molybdate [(NH ₄) ₂ MoO ₄]		Yellowish precipitate formed NaHPO ₄ + $12(NH_4)_2MoO_4$ + 23HNO ₃ \longrightarrow $(NH_4)_3[P(MO_{12}O_{14}] + 2NaNO_3$ + $21NH_4NO_3 + 12H_2O$	
Salt solution +Mercuric Chloride(HgCl ₂)			Reddish brown precipitate formed $2HgCl_2 + Na_2B_4O_7 + H_2O \longrightarrow$ $2Hg(BO_2)_2 + 2NaCl + 2HCl$